

Why the red tide over the West Florida Shelf in 2008 is mild: A view from ocean circulation

Robert H. Weisberg, Lianyuan Zheng, and Yonggang Liu

College of Marine Science University of South Florida

> ECOHAB P.I. Meeting VIMS, VA May 21, 2009

Outline

- 1. Introduction: Mean circulation patterns from moored observations
- 2. Brief info on model settings/forcing
- 3. Model validation: coastal sea level & velocity time series
- 4. Why the red tide over the West Florida Shelf in 2008 is mild? Monthly mean circulation during Jun Dec 2008
- 5. Why the red-tide detected in Oct 2008 only stay in a short period? Case study using snapshots of daily mean surface currents

Zonation of mean velocity veering with depth on the West Florida Shelf

The mean velocity vectors veer systematically with depth, with a change in polarization occurring across the shelf: The velocity vectors veer shoreward over shallow water and seaward over deeper water. Thus, along with its shelf-wide southward orientation, the mean flow is upwelling over shallow water and downwelling seaward from the inner shelf.

West Florida Shelf Model Grid and Observation Stations

Numerical Model Hindcast

Model: ROMS

Forcings:

Wind and heat flux: NCEP reanalysis Open boundary condition: one-way nesting to global HYCOM Initial condition: global HYCOM

Simulation Period:

June ~ December 2008

Web Sites:

http://ocg2.marine.usf.edu/~zheng/research/ROMS/ROMS08_June_Dec_global_nativegrid.html

Model-Data Comparison: Sea Level (36h low-pass)

Model-Data Comparison: Velocity (36h low-pass)

C15 (10 m)

Model-Data Comparison: Velocity (36h low-pass)

C11 (20 m)

Model-Data Comparison: Velocity (36h low-pass)

C13 (50 m)

Why the red tide over the West Florida Shelf in 2008 is mild?

Monthly mean near surface & near bottom currents

Monthly mean winds & currents

August

surf vel. and T 2008-08-16 bot vel. and T 2008-08-16 1m/s 0.1m/s 30⁰N 30⁰N 29⁰N 29⁰N e o Ч_D 80 9°0 20 20 28⁰N 28⁰N Ŷ 27⁰N 27⁰N 26⁰N 26⁰N 25⁰N 25⁰N 90⁰W 88°W 86⁰W 84⁰W 82⁰W 90⁰W 88⁰W 86°W 84[°]W 82⁰W

Monthly mean winds & currents

November

surf vel. and T 2008-11-15

Monthly mean winds & currents

December

surf vel. and T 2008-12-16

bot vel. and T 2008-12-16

Why the red-tide detected in October only stay in a short period?

FWRI Observations

Prior to the red tide was detected:

Daily mean surface current

After the red tide was detected:

Daily mean surface current

Surface currents after the red tide was detected (cont.)

Karenia brevis Counts, October 26-31, 2008

Summary

- Ocean circulation model hindcast shows that the high-nutrient deep-water transported to the WFS inner shelf was limited from Jun through Dec 2008. Thus, the red tide over the WFS in 2008 was mild.
- The Oct red tide event can be linked with ocean circulation. Before the red tide was reported outside of the Charlotte Harbor, there were a few days of weak onshore surface currents (Oct 8 ~ 10). Surface currents were offshore in the following two weeks, which transported the red tide away from the coast. This might explain why the Red-Tide outside of the Charlotte Harbor disappeared quickly in Oct.