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Abstract 
 Lagrangian trajectory models have been demonstrated to be a useful tool in oil spill 
response. Despite the improvements in this kind of models, surface drift prediction remains a 
difficult task plagued with uncertainties. This work presents a Stochastic Lagrangian Trajectory 
Model (SLTM) that quantifies the uncertainties in trajectory simulations and defines the most 
likely search area of possible trajectories. The methodology includes the following steps: 1) 
Numerical scheme based on the transport equation in Lagrangian form; (2) Parameter estimation 
process, which includes: (i) time independent parameter estimation based on the maximum 
likelihood method and (ii) time dependent parameter estimation through autoregressive moving 
average; (3) Monte Carlo simulation of multiple trajectories based on the joint probability 
distribution function and the temporal dependency model. The model is used to simulate the 
trajectories of surface drifters deployed in the Gulf of Mexico during the Deepwater Horizon oil 
spill incident using surface currents provided by the Global model HYCOM. A set of drifters 
was selected to estimate the model parameters and another one for simulation and validation. 
Observed drifter trajectories were compared with the modeled trajectories obtained with the  
deterministic and the SLTM approaches. After 5 days of simulation the root mean squared error 
of Lagrangian separation distance was found to be 115 km and 37 km for the deterministic 
approach and the best simulation of the SLTM, respectively. Moreover, actual trajectories were 
in the areas where the model predicted that the drifter was likely to go through, showing the 
capabilities of the SLTM for oil spill trajectory modelling and search and rescue applications. 
 
1 Introduction 

The prediction of the trajectory of oil spills in the ocean is of great importance in an oil 
spill response. Recent oil spill accidents, as the Prestige accident is Spain (2002) and the case of 
the Deepwater Horizon oil spill in the Gulf of Mexico in 2010, have shown that forecasting the 
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oil spill trajectory is fundamental for planning mitigation strategies (Castanedo et al., 2006;  Liu 
et al., 2011c).  Lagrangian trajectory models based on hydrodynamic and atmospheric models 
have been widely used to predict the trajectory of oil spills (e.g., Spaulding et al., 1992; Beegle-
Krause, 2001; Daniel et al., 2003; Castanedo et al., 2006; Abascal et al., 2009a).  

Despite the advances and improvements in this kind of models, surface drift prediction in 
the ocean is a difficult task because of the complexity of all processes involved, uncertainties in 
drift properties and in the environmental conditions. Therefore, the accuracy of the oil spill 
trajectory forecast depends on the formulation of the Lagrangian model itself and also on the 
accuracy of the met-ocean forcing data, usually provided by hydrodynamic and meteorological 
numerical models. All forecast models have errors that grow with time, which can lead to 
significant errors in the trajectory prediction. Given the relevance of the uncertainty in the 
trajectory forecast, several studies have been carried out recently to take into account the 
different sources of uncertainty in the trajectory simulations (e.g., Sebastião and Soares, 2006; 
Abascal et al., 2009b; Rixen et al., 2008; Liu and Weisberg, 2011). 

The uncertainty can be accounted for in a stochastic framework (Mínguez et al., 2012). In 
this approach, the relevant parameters are considered as random variables and their uncertainty is 
quantified in terms of a probability distribution function.  Once the random variables are 
determined, a Monte Carlo method (Rubinstein and Kroese, 2011) can be applied to simulate 
multiple trajectories and establish a search area for the location of the oil spill (or drifter objects). 
The advantage of dealing with uncertainty is that simple models, representing the most important 
physical processes, may be used instead of complex models. In these cases, the appropriate 
definition of the uncertainty is more important than the complexity of the model itself.  

In this work, the application of a Stochastic Lagrangian Trajectory Model (SLTM) 
(Mínguez et al., 2012) for oil spill modelling is presented. This model is able to quantify the 
uncertainties in trajectory simulations and defines the most likely search area for possible 
trajectories. The model is used to simulate the trajectories of surface drifters deployed in the Gulf 
of Mexico during the Deepwater Horizon oil spill incident (Liu and Weisberg, 2011) using 
surface currents provided by the Global HYbrid Coordinate Ocean Model (HYCOM) (e.g., 
Bleck, 2002; Chassignet et al., 2003). A set of drifters is used for the parameter estimation 
process and another one for simulation and validation. Taking into account that the HYCOM is 
traditionally a deep ocean application model (Chassignet et al., 2003; Shaji et al., 2005), this 
work focuses on the simulation of the drifter trajectories located in deep ocean. The validation is 
performed by means of the comparison of the search area calculated with the SLTM and the 
observed drifter trajectories. Moreover, comparisons with the deterministic approach are 
performed in order to analyze the advantages of the SLTM. 

This paper is structured as follows. Next section describes the data used in this study. 
Following, the methodology and results are presented. Finally, the main conclusions are 
summarized. 

 
2 Data 
 Drifters used in this work were deployed by the Ocean Circulation Group (OCG) within 
the USF College of Marine Science in response to the Deepwater Horizon oil spill (Liu et al., 
2011a). Drifters were deployed in May 2010 in the Loop Current, its shed eddy and on the West 
Florida Shelf to help monitor the evolution of the regional flow fields (Liu et al., 2011b). Such 
information further served in assessing the trajectories as estimated by the models employed to 
track the spilled oil (e.g., http://ocgweb.marine.usf.edu). Six drifters were initially deployed 
during a 19–24 May 2010 R/V Bellows cruise joint between the USF OCG, the USF Optical 
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Oceanography Laboratory, the Florida Department of Environmental Protection (FDEP), the 
U.S. Coast Guard (USCG), and Florida Wildlife Research Institute (FWRI). Three drifters were 
subsequently deployed during a 2–14 June 2010 R/V Weatherbird II cruise by the USF OCG 
assisted by the Florida Institute of Technology (FIT). Nine more drifters were then added during 
a 22–25 June 2010 R/V Weatherbird II cruise, in a joint effort by the USF OCG, the Woods Hole 
Oceanographic Institution (WHOI), and the Northeast Fisheries Science Center (NEFSC). The 
drifters, drogued at 1 m depth, transmitting data via satellite in real time. The locations of the 
drifter trajectories were binned at hourly time steps and archived. Figure 1 shows the trajectories 
for May–August 2010. Note that the paths in the open ocean (outside the continental slope) are 
represented by the thinner lines. These drifter data have been used to describe the ocean 
circulation patterns in the eastern Gulf of Mexico, and to assess the performance of trajectory 
models (Liu and Weisberg, 2011) and altimetry products (Liu et al., 2014). 

 
Figure 1 Drifters released in the eastern Gulf of Mexico during May-August 2010. The 

thinner lines represent the paths in the open ocean. 
 

 Ocean currents were obtained with the Global HYCOM(e.g., Bleck, 2002; Chassignet et 
al., 2003), which is configured to simulate global ocean circulation on a Mercator grid with 1/12° 
equatorial resolution (e.g., Chassignet et al., 2007, 2009). The horizontal resolution in the Gulf of 
Mexico is about 9 km. Surface forcing is from Navy Operational Global Atmospheric Prediction 
System (NOGAPS) (Hogan and Rosmond, 1991; Rosmond, 1992) and includes wind stress, 
wind speed, heat flux (using bulk formula), and precipitation. Data assimilation is via the Navy 
Coupled Ocean Data Assimilation (NCODA) system (Cummings, 2005), which uses the 
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Modular Ocean Data Assimilation System (MODAS) synthetic data product (Fox et al., 2002). 
The Global HYCOM and NCODA hindcast experiment output are available as daily snapshots 
via the HYCOM Consortium website (http://www.hycom.org/). This study uses the surface 
velocity fields that where interpolated into 3-hourly time series (as in the work of Liu and 
Weisberg, 2011). 
 
3 Methodology 

The Stochastic Lagrangian trajectory model (SLTM) used in this work is a particular 
application for oil spills of the SLTM for drifting objects developed by Mínguez et al. (2012). 
The model encompasses the following stages: 1) Numerical scheme based on the transport 
equation in Lagrangian form; (2) Parameter estimation process, which includes: (i) time 
independent parameter estimation based on the maximum likelihood method and (ii) time 
dependent parameter estimation through autoregressive moving average; (3) Monte Carlo 
simulation of multiple trajectories based on the joint probability distribution function and the 
temporal dependency model.  
 
3.1 Lagrangian Trajectory Model 

Oil spills on the sea surface are transported by the combined effect of surface ocean 
currents, wind, waves and turbulent dispersion. This transport is governed by the transport 
equation in Lagrangian form: 

( ) ( )a di i
dx = U x ,t +U x ,t
dt

                                                      (1) 

   
where x  is the position and aU


 and dU


 are the advective and the diffusive velocities, 

respectively. Assuming a partial transference of momentum from wind and waves, the advective 
velocity of the oil slick, aU


, can be expressed as  

 
a C W HD HU =U +C U C U+

   
                                                 (2) 

 
where CU


  is the surface current velocity, WU


is the wind velocity at a height of 10 meters over 

the sea surface, HU


is the wave-induced Stokes drift, DC is the wind drag coefficient and HC  is 
the wave coefficient. Note that traditionally, the advection term is assumed to be deterministic, 
where the optimal parameters DC  and HC  are between 3-3.5% and 0.01-1.5% (ASCE, 1996; 
Castanedo et al., 2006; Abascal et al., 2009b). However, in this model coefficients DC and  HC  
are assumed to be normally distributed random variables with parameters 2( , )

D DC Cµ σ  and  
2( , )

H HC Cµ σ  , respectively. 
  The diffusive velocity depends on the sea turbulence characteristics and it is assumed to 
be stochastic. Assuming that the angle between the advection velocity and the abscissas axis is 
γ , the velocity dU


is given by: 

 
cos( ) sin( )
sin( )  cos( )

L
d

T

D
U

D
γ γ
γ γ

−   
=   
  


                                                         (3) 
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where the longitudinal (DL) and transversal (DT) diffusive components are normally distributed 
random variables with parameters 2( , )

L LD Dµ σ and 2( , )
T TD Dµ σ respectively.  

  Note that a general model is presented. However, the final model will depend upon data 
availability for each particular application. In this study, only surface currents data are 
considered. 
 
3.1.1 Numerical Scheme 
  Solving Eq. (1) by means of the first-order Euler method and taking into account that 
only surface currents data are considered in this study, the oil spill location at every time step is 
defined as: 
 

;1,...,

t t -1 a t-1 d t-1 t-1 C t-1 d t-1

t

x x t U x U x x t U x U x

t n

          
          
             

= + ∆ + = + ∆ +

=

          

   (4) 

where tx


is the oil spill location at time t, ( )a tU x
 

, ( )d tU x
 

 and ( )C tU x
 

 are, respectively, the 
advection, the diffusion and the surface current at the oil spill location at time t and nt is the  
number of time intervals considered.  
  Using (3), the diffusive velocity can be expressed as: 

 
1

1 1
1

1
1 1

cos( )  sin( )
( )

sin( )   cos( )

t
t t L

d t t
t t T

D
U x

D
γ γ
γ γ

−
− −

−
−

− −

 − 
=      

 
                                                (5) 

 
where 1tγ − is the direction angle of the advection velocity 1( )a tU x −

 
, and t

LD and t
TD are the 

longitudinal and transversal diffusive velocities at the oil spill location at time t. As mentioned, 
random model variables within vector ( ), t

L TD D=p are assumed to follow a normal distribution 
with their corresponding mean and standard deviation parameters. It is worth mentioning that 
random model parameters take into account, implicitly, all the uncertainties involved in the 
simulation process (e.g., uncertainty in the forcing data, numerical scheme). As mentioned 
above, only currents data have been used in this study. Thus, the only random variables 
considered are the transversal (DT) and longitudinal (DL) diffusive components. Note that the 
diffusive components are taking into account all the uncertainties involved in the simulation 
process and they do not represent an estimate of physical dispersive processes.  
 
 
3.2 Parameter Estimation 

The parameter estimation process is based on two different stages: (1) time independent 
parameter estimation based on the maximum likelihood method and (2) time dependent 
parameter estimation through autoregressive moving average. These processes are described 
below. 
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3.2.1 The Maximum Likelihood Method 
The first step of the parameter estimation process consists in estimating the parameters of 

the transversal (DT) and longitudinal (DL) random diffusive components by means of the 
maximum likelihood method. The maximum likelihood method is based on maximizing the 
likelihood of an observed sample, and it can be used to derive point and interval parameter 
estimates. In this study, the observed sample corresponds to the drifter trajectories previously 
described. We assume that the random probability distribution parameters are estimated so that, 
using Eq. 4, the likelihood of the model to reproduce the given trajectories is maximized.  

Following the methodology proposed by Mínguez et al. (2012), the mean and standard 
deviation parameters 2 2( , , , )

L L T TD D D Dθ µ σ µ σ= can be estimated using the log-likelihood function 
by solving the following optimization problem: 
 

( ),

,

, 1 1 1
log ;

p t d

i t
k

n n n
i t

k k
p i t i

Maximize f p
θ

θ
= = =

  ∑∑∑                                                 (6) 

 
where ,i t

kp corresponds to the actual value of random variable k from the vector p for drifter 
trajectory i at time t, np is the number of random variables considered, nt is the number of time 
intervals, nd is the number or drifting buoys, and subject to the following constraints: 

 

1 ;;    1,...,    1,..., ;t-1 t-1

i i i i
t t a d t dx x t U x U x t n i n

    
    −     
     

− = ∆ + = =
     

                        (7) 

11( ) ( );    ;
ii

a C ttU x U x t i−− = ∀ ∀
  

                                                       (8) 

 1 arctan ;    1,..., ;    1,..., ;y
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i
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t t di
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U
t n i n

U
γ −

 
 = = =
 
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                                   (9) 

, 1
1 1

1
, 1

1 1

cos( )   sin( )
( )

sin( )    cos( )

i i i t
i t t L

d t i i i t
t t T

D
U x

D
γ γ
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−
− −

−
−

− −

  −
=     
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                                        (10) 

0; 0
L TD Dσ σ> >                                                               (11) 

 
where fk is the probability density function of the random variable k, and 

i
tx


 are the data 
locations related to the ith drifter trajectory at time t. This problem differs from the traditional 
maximum likelihood formulation because the actual values of the random variables are unknown 
and must be obtained from equations (7)-(10). Solving equations (6)-(11) the optimal value ( θ ) 
of the model parameters is obtained. This optimal value is the MLE (Maximum Likelihood 
Estimation) of θ . In addition, the most likely values of the random variables 

),...,0;1,...,0;,...,1;ˆ( ,
dtp

ti
k nintnkp =−==  are also obtained. These values represent the actual 

random variable values which allow reproducing the given trajectory with maximum probability.  
 
3.2.2 Temporal Dependence 

The parameter estimation method presented in the previous section assumes temporal 
independence related to the random variables. However, the most likely values of the random 
variables may hide a temporal dependency structure. This temporal dependency is explored after 
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the parameter estimation by means of ARMA (AutoRegressive Moving Average models) 
models. In order to fulfill ARMA models requirements, a new stochastic process for each 
variable, Z, with a standard normal marginal distribution is defined: 

( )1
Yz F z−= F                                                                   (12) 

where FY is the cumulative distribution function (CDF) of the marginal distribution associated 
with the original stochastic process Y and ( ).F  is the CDF of the standard normal random 
variable. 

The stochastic temporal dependence of the random variables is reproduced using 
transformation (12) and the following univariate ARMA models: 
 

 
1 1

kk qr
k k k k k k
t j t j t j t j

j j
z zφ ε θ ε− −

= =

= + −∑ ∑                                                     (13) 

 
where ε are the residuals, which are uncorrelated 0;   1,...,k k

t t j pE k nε ε −  = ∀ =  . 
Once the model parameters in (13) are estimated, it is possible to reproduce not only the 

marginal distribution related to the random model variables, but also its temporal dependency. 
This characteristic is used afterwards for the simulation of new trajectories. 
 
3.3     Monte Carlo Simulation 
 After the parameters of the model are estimated, a Monte Carlo method in conjunction 
with the joint probability distribution function and the temporal dependency model presented in 
the previous section is applied to simulate multiple trajectories. This procedure provides an 
ensemble of numerical positions that defines the search area of the oil spill location. 
 Maximum likelihood estimated parameters θ , the estimates of the ARMA models 
defined in (13) and the standard deviation of the corresponding residuals, ;  1,...,k

pk nεσ ∀ = are 

used as inputs of the Monte Carlo simulation. Moreover, the initial location of the oil spill 0x


, 
the Euler time step ∆t, the met-ocean forcing data, the number of trajectories ns and time steps ts 
to be simulated are also required. 
 The Monte Carlo simulation encompasses the following steps: 1) Error simulation: 
simulate the vectors 

k
ε ; 2) ARMA: use those simulated errors in the ARMA models given in 

(13); 3) Inverse transformation: Get the simulated values of the random model variables using 
the inverse of transformation (12) and 4) Trajectory generation: reproduce the simulated 
trajectory through the Eq.(4). This procedure is repeated ns times and as result ns simulated 
trajectories are obtained. More details can be found in Mínguez et al. (2012). 
 
4 Results 
4.1 Parameter Estimation 

As a first step of the methodology the longitudinal (DL) and transversal (DT) random 
diffusive parameters were estimated. The parameter estimation was performed using two drifter 
trajectories for the period May 25th 2010 at 18:00 to June 8th 2010 at 00:00 (see Figure 2). Daily 
currents fields were interpolated into 3-hourly time series. To be consistent with currents 
temporal resolution, 3-hourly drifter data were also considered in this process. 

The MLEs and the 95% confidence intervals of the DT and DL random variable 
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probability distributions are presented in Table 1. Given that the units are in grades per second, 
the values have been scaled (multiplied) by 10^5 to highlight the differences. As can be 
observed, the magnitude of the mean value and the standard deviation are similar for both 
parameters, indicating similar uncertainty in the longitudinal and transversal component.  

The MLE estimation process provides the values of the random variables � LD  and  
�

TD which allows reproducing the drifter trajectories. Figure 2 (right panel) shows the 
comparison between the drifter trajectories, labeled as Data 1 and Data 2 (black and gray solid 
circle markers) and the trajectories estimated by the maximum likelihood method, labeled as 
MLE 1 and MLE 2 (blue and red circle markers). As can be observed, simulated trajectories are 
identical to the true trajectory data. 

 

 
Figure 2 Drifter trajectories selected for the MLE estimation problem (Data 1 and 2), 

and the final trajectories estimated by the maximum likelihood method (MLE 1 and 2). 
 
 

Table 1     MLEs and 95% Confidence Intervals of the DL and DT Random Variable 
Probability Distributions 

Parameter Lower bound Mean Upper bound 

( )º /
TD sµ  -0.27142006 -0.19355899 -0.11569793 

( )º /
TD sσ  0.49372723 0.54892431 0.60412138 

( )º /
LD sµ  -0.15356396 -0.10494452 -0.056325076 

( )º /
TD sσ  0.30830228 0.34276946 0.37723663 

 
 
4.2 Temporal Dependence 

As a second step of the methodology, the temporal dependence of the stochastic 
processes related to the variables t

LD and t
TD  was explored. Figure 3 shows the autocorrelation 
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and partial autocorrelation functions related to the maximum likelihood values of the random 
variables TD

tẐ  (panels above) and LD
tẐ  (panels below). Note that the temporal resolution of the 

data, and therefore, the time lag is 3 hours. The autocorrelation function decays gradually in both 
processes. Moreover, there are two partial autocorrelation coefficients at lag 1 and 2 outside the 
95% confidence intervals. This behavior indicates that the processes are very likely to 
correspond to moving autoregressive processes of order two. Based on these results, an ARMA 
(2,0) model were fitted to the time series TD

tẐ  and LD
tẐ obtaining the following parameter 

estimates: 1 1.202TD
φ = − , 2 0.3111TD

φ = and 1 1.264LD
φ = − , 2 0.4195LD

φ = . The standard deviation 
estimates of the residuals are =TD

εσ̂  0.3907 and =LD
εσ̂ 0.4166, respectively. Finally, a Ljung–

Box lack-of-fit hypothesis test considering the null hypothesis that no serial correlation at the 
lags 1, 2, 3, 4, and 5 exist was applied on the residual samples. The p values obtained for a 5% 
significance level are (0.8205    0.6740    0.7736    0.8456    0.8454) for the transversal residuals, 
and (0.6164    0.4089    0.4476    0.5709    0.7119) for the longitudinal residuals. Note that since 
in all cases the p values are higher than the significance level 0.05, the null hypothesis is 
accepted. 
 

 
Figure 3 Autocorrelation and partial autocorrelation functions related to the 

maximum likelihood values of the random variables TD
tẐ   (upper panels) and LD

tẐ   (lower 
panels).  
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4.3     Simulation and Validation 
Once the model parameters were estimated, the next step of the methodology was the 

simulation of a high number of numerical trajectories (N) by means of the Monte Carlo method 
described in section 3.3. Simulations and validation of the model results were carried out using a 
different set of drifter trajectories (see Figure 4 and Table 2) during the period May – July 2010. 
Note that this dataset is independent of the drifter data used for the parameter estimation process. 
For each drifter trajectory shown in Figure 4 and Table 2, the Lagrangian Stochastic Model was 
initialized daily from the observed drifter locations at 00:00 h UTC. Subsequently, 10,000 
trajectories were simulated with a 5-days forecast horizon period.  

 
Figure 4 Drifter trajectories used for the validation of the model (May-July 2010). The 

bathymetry contours are also shown (units in m). 
 

As an example, results of simulations for the drifter # 87806 in the period 06/12/2010 
00:00 UTC – 06/21/2010 00:00 UTC (red color in Figure 4) are presented. For each 5-days 
trajectory section selected, Figure 5 shows the actual drifter trajectory (red circles), the 
deterministic one (green circles) and the best simulation obtained with the SLTM (black circles), 
which is the closest to the true ones.  In addition, the contour plots related to the density of points 
for each trajectory is also shown, which represent the search area. The higher the contour value is 
for each location, the higher the likelihood of the corresponding drifter trajectory to go through 
the location. As can be observed, actual drifter trajectories are in the areas where the model 
predicted that drifters were likely to go through.  
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Table 2     Drifter Trajectories used for the Validation of the Model (May-July 2010) 
DRIFTER (#) INITIAL TIME (UTC) FINAL TIME (UTC) ∆t (h) 

87795 06/14/2010 05:00 06/26/2010 11:00 3 
87796 06/14/2010 08:00 06/26/2010 08:00 3 
87798 05/25/2010 00:00 06/08/2010 03:00 3 
87803 06/10/2010 20:00 06/22/2010 23:00 3 
87806 06/11/2010 07:00 06/26/2010 19:00 3 
38898 05/26/2010 11:00 06/22/2010 20:00 3 

 
 

 
Figure 5     Example of the results for the drifter #87806. The drifter trajectory (red), 
deterministic trajectory (green), best simulation obtained with the SLTM (black) and 

search area (contour plots for the 10,000 simulated trajectories) are shown. 
 

Figure 6 (panels a, b, c and d) shows the separation distance between the actual and 
deterministic trajectory (black triangles) and between the actual and the best simulation 
trajectory obtained with the SLTM (grey circles) for the simulations shown in Figure 5 (panels a, 
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b, c and d). As can be observed, the error decreases significantly with the SLTM approach. This 
separation distance was calculated for the entire simulations performed using the trajectory 
dataset presented in Figure 4 and Table 2. Results show that after 5 days of simulation the root 
mean square error was found to be 115 km and 37 km for the deterministic approach and the best 
simulation of the SLTM, respectively. Moreover, actual trajectories were in the areas where the 
model predicted that the drifter was likely to go through. These results show the capability of the 
SLTM for trajectory modelling. 
 

 
Figure 6    Example of the temporal evolution of the distance for the drifter #87806. The 
comparison between the actual drifter and the deterministic trajectory (black triangles) 
and the actual drifter and the best simulation obtained with the SLTM (grey circles) is 

shown.  
5 Conclusions 

This work presents the modelling of oil spills and drifter trajectories by means of a 
SLTM (Mínguez et al., 2012). This model is able to quantify the uncertainties in trajectory 
simulations and to define the most likely search area for possible trajectories. It is worth 
mentioning that once estimated the model parameters, the SLTM can be applied for forecasting 
oil spill trajectories. The model is used to simulate the trajectories of surface drifters deployed in 
the Gulf of Mexico during the Deepwater Horizon oil spill incident using surface currents 
provided by the Global HYCOM model. Note that the HYCOM is traditionally a deep ocean 
application model and, therefore, this work focuses on the simulation of the drifter trajectories 
located in deep ocean.  
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It is very important to point out that the proposed method does allow to quantify 
objectively how important are the uncertainties associated with both numerical modelling and 
model parameterization with respect to the possible trajectories. As a result, the method provides 
a search area where according to all uncertainties any oil spill particle could be located, and also 
defines the probability of that particle of being in that location. Thus the magnitude of the search 
area depends upon the quality of forcings, parameterization and numerical resolution. The 
method itself does not improve estimates but allows to know how good the model and data are. 
Any improvement of these aspects, especially about the forcings, will result in a reduction of 
uncertainty and, as a consequence, the search area will be narrower with the same probability of 
containing the actual trajectories. Nevertheless, the model is very useful to define the risks 
related to oil spill reaching particular areas of interest. This is very useful to mitigate the 
consequences of possible accidents and for the definition of emergency plans and prioritization 
of actions in coastal areas. 

Finally, this work shows the capabilities of the presented stochastic methodology for oil 
spill and drifter trajectories modelling. Further studies are required to analyse the differences 
between drifter and oil spill trajectories. Moreover, further work is required to compare the 
stochastic simulations with the simulations provided by a typical oil spill Lagrangian model. 
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